

 Newsletter Issue 001 – July 2003

Welcome!

Welcome to the very first PeteFinnigan.com Newsletter! Now that the first issue is out I intend to
write a newsletter about every couple of months or so. Time permitting of course! So what is it all
about? What will these newsletters contain?

Well I want each newsletter to consist of two or three short technical articles (or ramblings about
something in particular, personally I like to try things out for myself to see what happens, this is how I
learn, I think that sums up the essence of what I want these technical writings to be like) and probably
one or two pertinent news items if anything is happening at the time. The news letters will
predominantly be Oracle security based as that is what we are interested in here but they could be
about other interesting technical / programming issues, Oracle related of course. Although security is
my prime interest knowledge of any other interesting area leads to a better understanding of the
product and often reveals some new ideas in security!

As this is the first newsletter I thought it might be worthwhile to say a little about myself and my
company PeteFinnigan.com limited. Then I want to talk about some interesting snippets on SQL*Plus
I have been discussing recently with a colleague and some items I have posted and seen on one of the
newsgroups.

So let us get on with it!

Some background
I have been working in the IT industry since early 1995 and prior to that in engineering doing
electrical design for a large manufacturer. I hold a first class honours degree in electronic and
electrical systems engineering from Leeds metropolitan university in the north of England worked
for part time, one day per week and graduating in 1995. I was also awarded the IEE prize for being
the highest graded student. I have had many roles in IT including developer, consultant, tester,
implementer, all involving Oracle in some way throughout this time.
I have had an interest in security and Oracle internals for many years and over the past two years I
have worked to develop security standards for Oracle installations resulting in the publishing of the
Oracle Security Step-by-step – a survival guide for Oracle security for the SANS Institute. I have
written and published many articles in this field including for security focus, iDefense.com, SANS
Institute, my own website and TISC.

I formed PeteFinnigan.com Limited in 2003 to provide my extensive Oracle security knowledge to
clients worldwide as part of security audits, forensics work audit configuration and anything Oracle
security related. We are based in the North of England near the city of York. I started the company
niaeve with the aim of concentrating on oracle and security only. I believe that specialising in this
way can benefit those clients who do not have the time to train their staff to be specialists in this
area. I also strongly believe in knowledge sharing and this is why my web site although in its
infancy hosts a lot of free information on Oracle security and this will continue to be added to as
time goes by. I am also regularly writing papers on the subject of Oracle security for various
websites.

Enough background!!!

News!
A recent posting on the news site eweek (http://www.eweek.com/
article2/0,3959,1120074,00.asp?kc=EWAV10209KTX1K0100440
) discussed two interesting new tools to be coming soon from
Oracle:
• The first is a tool to manage which patches have been

applied and which need to be applied. The tool is a general
patch tool not just security patches but Oracle said that
security patches should be flagged differently. This is great
news as it has always been very difficult to reliably
determine exactly which patches have been applied. The info
in v$version is not always updated and the installerActions

log also is not always reliable. Let’s hope that Oracle also
relax the policy on security patches only being available
if a support contract is held.

• The second new product is more interesting and is described
as an auto hardening tool. The tool will check for database
services used by hackers and warn the admin that they
should be turned off. It will also identify configuration issues
that could lead to security problems. This tool should be
available free in nine months time.

Protecting SQL*Plus

A good few newsgroup threads have discussed the subject of
protecting access via SQL*Plus in the past. Whether it is possible

or not or what can be done to limit access in anyway. This is the
holy grail to some but probably pointless as chopping off
SQL*Plus doesn’t stop TOAD or access using ODBC from MS
Excel or OO4O from MS Excel or downloading a java thin
client….

A way forward is to limit access to the database to certain IP
addresses and to log what users are doing using audit features such
as standard audit, system triggers, normal user triggers and fine
grained audit. A good security policy limiting privileges of all
users to the least privileges necessary is also a good step. If this is
done then even if an errant user connects using a client SQL*Plus
session or from MS Access or whatever, then he should not be able
to do any more that his normal application user could do through
any provided application.

As quite a few people have been talking about securing and
protecting SQL*Plus recently what I want to do now is to explore a
few ideas to do with limiting SQL*Plus.

Bypassing the product user profile.

I came across an interesting issue with the product_user_profile
table recently. I was asked why a user via SQL*Plus was able to
execute an alter user command when the ALTER command had
been disabled in the product_user_profile for that user (and all
others!). After some digging it became evident that the alter user
command was executed in an anonymous PL/SQL block with
execute immediate within a script.

The reason seemed to be that SQL*Plus itself checks the product
user profile against what is being executed and stops the command
if it is not allowed but anonymous PL/SQL is sent to the server
without parsing it to check for disallowed commands.

The solution is to also block PL/SQL in the product user profile
table for the particular user. Here is an example demonstrating this
issue:
SQL> connect system/manager
Connected.

SQL> select count(*)
 2 from product_profile;

 COUNT(*)

 0

SQL> -- create a user for the demo
SQL> grant create session, alter user to
tester identified by tester;

Grant succeeded.

SQL> connect tester/tester
Connected.
SQL> -- test our alter user privileges on the
user pete
SQL> alter user pete identified by
new_passwd;

User altered.

SQL> -- re-connect as system and stop the
user tester from altering users
SQL> -- via SQL*Plus using product user
profile
SQL> connect system/manager
Connected.
SQL> insert into product_profile
 2 (product,userid,attribute,char_value)
 3 values
('SQL*Plus','TESTER','ALTER','DISABLED');

1 row created.

SQL> commit;

Commit complete.

SQL> -- re-connect as tester and try to alter
user pete's password
SQL> connect tester/tester
Connected.
SQL> alter user pete identified by
another_passwd;
SP2-0544: invalid command: alter

SQL> -- OK, it fails - thats good now try
another way
SQL> begin
 2 execute immediate 'alter user pete
identified by secret';
 3 end;
 4 /

PL/SQL procedure successfully completed.

SQL> -- check it altered the password
SQL> connect pete/secret
Connected.
SQL> -- voila, product_profile has been
defeated!
SQL> -- OK, now try to block this loophole.
SQL> connect system/manager
Connected.
SQL> -- we have to restrict "declare" and
"begin" to stop pl/sql
SQL> insert into product_profile
 2 (product,userid,attribute,char_value)
 3
values('SQL*Plus','TESTER','BEGIN','DISABLED'
);

1 row created.

SQL> insert into product_profile
 2 (product,userid,attribute,char_value)
 3
values('SQL*Plus','TESTER','DECLARE','DISABLE
D');

1 row created.

SQL> commit;

Commit complete.

SQL> -- try again to use dynamic pl/sql
SQL> connect tester/tester
Connected.
SQL> begin
SP2-0544: invalid command: begin
SQL> declare
SP2-0544: invalid command: declare
SQL> -- OK, the loophole is blocked

The example demonstrates that a user who has been restricted via
SQL*Plus from executing an ALTER command can get around
this (see bold code above) by using dynamic PL/SQL. The solution
to this is to restrict PL/SQL via the begin and declare keywords.
Problems arise if PL/SQL needs to be used for a particular user as
then it is not possible to block the loophole. Before Native
Dynamic SQL (NDS) was introduced dynamic SQL had to be done
with the package dbms_sql or dbms_sys_sql. The problem could
be prevented by revoking access on these packages. Now that NDS
is built into the language it is not possible to restrict dynamic SQL
and block this type of hole if PL/SQL is required.

Note that this issue potentially applies to any other SQL commands
that could be restricted via the product user profile where those
commands can be done in dynamic PL/SQL.

It should be noted that protecting SQL*Plus is pretty pointless in
this day and age of ODBC, thin Java clients and the whole array of
other products that support Oracle connectivity. The other point
worth mentioning is those users connecting as SYS, SYSTEM and
privileged connections “AS SYSDBA” and “AS SYSOPER”
bypass the product user profile functionality altogether.

Renaming SQL*Plus

A while ago someone on the comp.databases.oracle.server
newsgroup was talking about restricting the use of SQL*Plus on a
client and forcing all users to access the database via their
application. One poster suggested checking v$session and using a
logon trigger. Another poster suggested that this could be easily
spoofed by renaming the SQL*Plus binary. I tried an experiment to
see if this was true. Here are the results.

First a test from a Windows 98 client to an Oracle 8.1.7 database
on Solaris:
C:\Oracle\Ora81\BIN>sqlplus pete/pete@plsq

SQL*Plus: Release 8.1.5.0.0 - Production on
Wed Jul 9 16:15:18 2003

(c) Copyright 1999 Oracle Corporation. All
rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0
- Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production

SQL>
SQL> select username,program,module
 2 from v$session
 3 where username='PETE';

USERNAME PROGRAM
------------------------------ --------------

MODULE

PETE
SQL*Plus

SQL>
SQL> EXIT
Disconnected from Oracle8i Enterprise Edition
Release 8.1.7.0.0 - Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production

C:\Oracle\Ora81\BIN>copy sqlplus.exe
hacker.exe
 1 file(s) copied

C:\Oracle\Ora81\BIN>hacker pete/pete@plsq

SQL*Plus: Release 8.1.5.0.0 - Production on
Wed Jul 9 16:19:00 2003

(c) Copyright 1999 Oracle Corporation. All
rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0
- Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production

SQL>
SQL> select username,program,module
 2 from v$session
 3 where username='PETE';

USERNAME PROGRAM
------------------------------ --------------

MODULE

PETE
SQL*Plus

SQL>

From the client point of view renaming SQL*Plus doesn’t seem to
be a trivial way to trick v$session. Let’s try on the server as well:

oracle:venus> sqlplus pete/pete@plsq

SQL*Plus: Release 8.1.7.0.0 - Production on
Wed Jul 9 16:34:30 2003

(c) Copyright 2000 Oracle Corporation. All
rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0
- Production

With the Partitioning option
JServer Release 8.1.7.0.0 - Production

SQL> select username,program,module
 2 from v$session
 3 where username='PETE';

USERNAME PROGRAM
------------------------------ --------------

MODULE

PETE sqlplus@venus
(TNS V1-V3)
SQL*Plus

SQL> exit
Disconnected from Oracle8i Enterprise Edition
Release 8.1.7.0.0 - Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production

oracle:venus> cp $ORACLE_HOME/bin/sqlplus
./hacker
oracle:venus> ./hacker pete/pete@plsq

SQL*Plus: Release 8.1.7.0.0 - Production on
Wed Jul 9 16:36:49 2003

(c) Copyright 2000 Oracle Corporation. All
rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0
- Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production

SQL> select username,program,module
 2 from v$session
 3 where username='PETE';

USERNAME PROGRAM
------------------------------ --------------

MODULE

PETE sqlplus@venus
(TNS V1-V3)
SQL*Plus

SQL>

This produces the same result as renaming the SQL*Plus binary on
the client.

Therefore using a logon trigger and restricting SQL*Plus based on
what is stored in v$session does seem like a viable first base
solution, it is not foolproof but would stop casual and normal
business users.

More than likely the module column is set by
dbms_application_info.set_module called from the SQL*Plus
binary on the users behalf. A quick use of trace and tkprof shows
this:

BEGIN DBMS_APPLICATION_INFO.SET_MODULE(:1,NULL);
END;

call count cpu elapsed disk
query current rows
------- ------ -------- ---------- ---------- -----
----- ---------- ----------
Parse 3 0.00 0.00 0
0 0 0
Execute 3 0.00 0.00 0
0 0 3
Fetch 0 0.00 0.00 0
0 0 0
------- ------ -------- ---------- ---------- -----
----- ---------- ----------
total 6 0.00 0.00 0
0 0 3

Misses in library cache during parse: 0
Optimizer goal: CHOOSE
Parsing user id: SYS

Of course a more determined user could with skill alter the Oracle
networking packets being passed to the server and hide the fact
SQL*Plus was being used or possibly alter the strings held in the
binary with a hex editor. This would not be trivial as the module
would need to be set correctly to not SQL*Plus and also the
program field would need to be changed.

A logon Trigger
A useful protection against SQL*Plus would be to use a logon
trigger to check for the application being used and then to error if
the conditions are not met.

A warning: This is a good solution for stopping casual access with
SQL*Plus a clever hacker will beat it. From above we saw that re-
naming SQL*Plus will not fool this method easily but if this
method were to be applied to a home grown application things
would not be the same. Renaming another application to
masquarade as your business app may work!

A sample logon trigger is given in the SANS guide (action 5.7.3)
for capturing logon info from the client, this can be altered to block
a user from logging on if they are using SQL*Plus as follows:

create or replace trigger check_logon
 after logon on database
declare
 cursor c_check is
 select
sys_context('userenv','session_user')
username,
 s.module,
 s.program
 from v$session s
 where
sys_context('userenv','sessionid')=s.audsid;
 --
 lv_check c_check%rowtype;
begin
 open c_check;
 fetch c_check into lv_check;
 if lv_check.username in ('SYS','SYSTEM')
then
 null;
 elsif upper(lv_check.module) like
('%SQL*PLUS%') or
 upper(lv_check.program) like
('%SQLPLUS%') then
 close c_check;
 raise_application_error(-
20100,'sqlplus banned');
 end if;
 close c_check;
end;
/

After installing this and then trying to connect as a user with
SQL*Plus we get:

oracle:venus> sqlplus pete/pete@plsq

SQL*Plus: Release 8.1.7.0.0 - Production on
Thu Jul 10 20:30:12 2003

(c) Copyright 2000 Oracle Corporation. All
rights reserved.

ERROR:

ORA-00604: error occurred at recursive SQL
level 1
ORA-20100: sqlplus banned
ORA-06512: at line 20

Delete the PUP tables?
Geoff Ingram in his book High Performance Oracle offers a
solution to the problem of stopping access by SQL*Plus or MS
Access that involves moving the audit table aud$ into the system
schema and adding a trigger onto it to capture -942 errors. These
are generated because product_privs has been removed. SQL*Plus
queries this table on start-up. The idea is that SQL*Plus will
generate an error in the audit log and then the trigger will fire and
send an alert to a waiting daemon that will kill the process.

Whilst the idea is good there are some flaws. The first is that
Oracle will not support the moving of the AUD$ table to another
schema. The second is that this system could easily be broken by
someone in the future inadvertently installing the pup tables and
views again. The other issue is as stated above that these tables are
not queried by privileged connections so this method would not
capture all accesses anyway.

Other Ideas

Another option, is to use role based security to stop users logging
on with applications such as SQL*Plus. Strangely as I write this a
newsgroup thread has just started where one of the posters (Jacques
Kilchoer) suggests a solution based on this idea.

The idea is to grant only create session to all the application users
and then grant a role that allows them access to do the tasks they
need but this role is not a default role and is protected by a
password. The application on start-up connects and submits a set
role command and uses the password to enable the role. There are
a number of ways to try to protect the password. Some application
writers obfuscate the password, some encrypt it (as Jacques
suggests) and some read it from a secure file or table in the
database. Because the user doesn’t know the role password she
cannot just logon with SQL*Plus.

There are flaws with this method, the first is that any encryption or
obfuscation scheme if broken will render the security useless, the
second is that the password can be easily read from the wire with
tools such as snoop or by using SQL*Net trace set to SUPPORT
level to capture packet contents. An application user can set client
SQL*Net trace and login and then find the password from the trace
file.

Again this type of scheme would not stop a determined hacker or
malicious user.

Wrapping up on SQL*Plus

In summary I believe that trying protect SQL*Plus whilst useful to
stop casual user connections with this tool rather than your
application is somewhat futile considering the multitude of other
methods of connecting to the database.

From what we have seen with a number of ideas and issues with
blocking SQL*Plus it is very difficult to keep out just this tool.
One further issue is the plethora of Oracle client CD’s in existance.
It would be easy for a casual user to obtain one and install an
Oracle client for herself!! – happy hacking!!

How to subscribe and unsubscribe
To subscribe to the PeteFinnigan.com Limited newsletter simply
send a blank email to news@petefinnigan.com to un-subscribe
send a blank email to nonews@petefinnigan.com.

For Oracle security auditing and specialist Oracle security consulting contact sales@petefinnigan.com for rates and availability.
Company number 4664901

Phone:
Fax:
Email:
Web Site:

0044 (0) 1757 701840
0044 (0) 1757 701840
sales@petefinnigan.com
http://www.petefinnigan.com

Registered Office
PeteFinnigan.com Limited
3 Rowan Close
North Yorkshire
YO8 9FJ
England

© Copyright PeteFinnigan.com Limited 2003. All rights reserved. All trademarks are the property of their respective
owners and are hereby acknowledged

mailto:news@petefinnigan.com
mailto:nonews@petefinnigan.com
mailto:sales@petefinnigan.com

	Some background
	News!
	Protecting SQL*Plus
	Bypassing the product user profile.
	Renaming SQL*Plus
	A logon Trigger
	create or replace trigger check_logon
	after logon on database
	declare
	cursor c_check is
	select sys_context('userenv','session_user') username,
	s.module,
	s.program
	from v$session s
	where sys_context('userenv','sessionid')=s.audsid;
	--
	lv_check c_check%rowtype;
	begin
	open c_check;
	fetch c_check into lv_check;
	if lv_check.username in ('SYS','SYSTEM') then
	null;
	elsif upper(lv_check.module) like ('%SQL*PLUS%') or
	upper(lv_check.program) like ('%SQLPLUS%') then
	close c_check;
	raise_application_error(-20100,'sqlplus banned');
	end if;
	close c_check;
	end;
	/
	After installing this and then trying to connect as a user with SQL*Plus we get:
	oracle:venus> sqlplus pete/pete@plsq
	SQL*Plus: Release 8.1.7.0.0 - Production on Thu Jul 10 20:30:12 2003
	(c) Copyright 2000 Oracle Corporation. All rights reserved.
	ERROR:
	ORA-00604: error occurred at recursive SQL level 1
	ORA-20100: sqlplus banned
	ORA-06512: at line 20
	Delete the PUP tables?
	Other Ideas
	Wrapping up on SQL*Plus
	How to subscribe and unsubscribe

