
1

Secure Coding in PL/SQL

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

2

Legal Notice

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

Secure Coding in PL/SQL

Published by

PeteFinnigan.com Limited

Tower Court

3 Oakdale Road

York

England, YO30 4XL

Copyright © 2020 by PeteFinnigan.com Limited

No part of this publication may be stored in a retrieval system, reproduced or transmitted in any form by any means, electronic, mechanical, photocopying,

scanning, recording, or otherwise except as permitted by local statutory law, without the prior written permission of the publisher. In particular this material may

not be used to provide training of any type or method. This material may not be translated into any other language or used in any translated form to provide

training. Requests for permission should be addressed to the above registered address of PeteFinnigan.com Limited in writing.

Limit of Liability / Disclaimer of warranty. This information contained in this course and this material is distributed on an “as-is” basis without warranty.

Whilst every precaution has been taken in the preparation of this material, neither the author nor the publisher shall have any liability to any person or entity

with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions or guidance contained within this course.

TradeMarks. Many of the designations used by manufacturers and resellers to distinguish their products are claimed as trademarks. Linux is a trademark of

Linus Torvalds, Oracle is a trademark of Oracle Corporation. All other trademarks are the property of their respective owners. All other product names or

services identified throughout the course material are used in an editorial fashion only and for the benefit of such companies with no intention of infringement of

the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this course.

3

Pete Finnigan – Background, Who Am I?

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

• Oracle Security specialist and researcher

• CEO and founder of PeteFinnigan.com Limited in February 2003

• Writer of the longest running Oracle security blog

• Author of the Oracle Security step-by-step guide and “Oracle Expert
Practices”, “Oracle Incident Response and Forensics” books

• Oracle ACE for security

• Member of the OakTable

• Speaker at various conferences
– UKOUG, PSOUG, BlackHat, more..

• Published many times, see
– http://www.petefinnigan.com for links

• Influenced industry standards
– And governments

4

Agenda

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Introduction

• Common attacks on PL/SQL Code

• Types of PL/SQL code security issues

• Develop a secure coding policy, training
and standards

• Detect PL/SQL issues

• Fixing PL/SQL code issues

5

Section

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

Introduction

6

What If Your Database Is absolutely locked Down?

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• We can completely lock down Oracle to
prevent breaches or data loss THEN

• The only attacks would be
• Corrupt employees can use apps to access

data

• Someone can gain access to the building and
access unattended IT

• An attacker can exploit the applications
PL/SQL business or security code

7

Oracles Efforts

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Since 2001 Oracle has had a lot of bugs reported in their PL/SQL

• Oracle has stated that they use Fortify SCA (probably now now)

• Oracle has stated and evidence shows that they use DBMS_ASSERT

• Oracle has stated in blogs and on their site that they train developers and
have their own 300 page secure code standard

• We as security researchers can look at bugs fixed by oracle

• Most code in customer databases is not written by oracle and is not at same
state as Oracle code. Note EBS code is similar to customer code.

• Oracle had a lot of pressure from the community to fix bugs over the years

• Customers (your) own code does not have the same pressures

• Oracle tests its own PL/SQL codes not yours

• In 20 years of security audits I do not see secure code or evidence of
any policy or process

http://www.oracle.com/us/support/assurance/codi
ng/index.html

http://www.petefinnigan.com/weblog/archives/000
01153.htm

8

Three Security Domains in Secure Code

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

1. Design and privilege of the business code as its
deployed

2. Access to dangerous logic or resources must be
controlled

3. Syntax based issues / errors

• The first two need education and understanding and
recognition

• The last can be by following checks/rules

Simply following syntax tips and
tricks would not be enough to
create really secure PL/SQL

• Secure code is much more than SQL Injection or other
syntax based issues

• Secure code is also about good design

9

Section

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

Attacks On / Via PL/SQL

10

Using PL/SQL in SQL Injection

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• SQL Injection attacks can be extended to not simply inject additional code into a
where clause by adding a union

• By extending a SQL statement to also use a PL/SQL function its possible to do other
things such as changing a password or removing audit or indeed anything else.

• The only remit is that the attackers database user must have the ability to create a
PL/SQL procedure or function to enable him to inject his PL/SQL into SQL.

• Later we will see how this restriction can be lifted

• Problems:

• SQL is vulnerable to concatenation

• Privileges granted to the procedure

• Owner of the procedure; better to share out responsibilities or invoker rights can
be used

• The attacker has the ability to create PL/SQL object

Demo: Run plinsql.sql

11

Statement Injection Example

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• A statement Injection is where PL/SQL can be injected into an
existing function or procedure that executes dynamic PL/SQL

• This is worse than SQL injection as injecting PL/SQL means often
that objects can be created, DDL executed and multiple statements
executed at the same time making it easier to do things for the
attacker that require the same session.

• Problems:
• The procedure is vulnerable to PL/SQL statement injection

• Privileges granted to the procedure

• Owner of the procedure / invoker rights

• The attacker can do anything in PL/SQL that the owner can do except use
privileges granted via roles

Demo: Run statement.sql

12

DDL Example

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• An attack would be to pass user “sys identified by a--”

• The attack is not just SQL injection but DDL injection and the SQL attack is
first purpose is to bypass the security checks and then to DDL inject

13

Dangerous Built In Packages

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Often it is advantageous to use packages shipped by Oracle as they
provide functionality that is pre-written

• Often the functionality used in Oracle shipped packages can be
considered “dangerous” as the packages access the network, file
system, operating system, Oracle internals and more

• Any Oracle provided package used in your code should be
considered as to “why it is used” and is it necessary or can a
different approach be made

• Dangerous packages might include DBMS_SCHEDULER,
UTL_TCP, DBMS_ADVISOR and more

• If dangerous packages are used then controls should be added to
limit the use to that actually needed and also if necessary the choice
of definer or invoker should also consider results of an attack

Demo: Run danger.sql

14

Section

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

Types of PL/SQL Code Issues

15

Core Types of Code Problem

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Privilege escalation

• Injection – SQL and PL/SQL, DDL, XSS,

• Open Interfaces

• IPR and data loss

• Critical Data, Business Data, Source code

• Runtime issues

• Owner, access user, permissions (i.e. just run it and access data)

• Replacement

• Cursor snarfing / cursor injection

• Use of dangerous code - DDL

• Use of dangerous built-in code

• File system access, Java, C, Network access

• Vulnerable Oracle packages

• TOCTOU issues

16

More Areas to Consider

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Comments that cause issue:

• FUDGE, BODGE, FIXME, ****, ####, TODO, BUG,
TICKET…

• Comments that describe security functions and how they
work – i.e. encryption key location or password mechanism

• Use of

• Undocumented packages – i.e. %_FFI, KUPP$...

• Deprecated methods and functions, i.e. DBMS_JOB

• Vulnerable functions – i.e. CPU, PSU

• Dangerous, i.e. UTL_MAIL

• Open Interface, i.e. DBMS_DDL

• Magic values, i.e. passwords, keys, IP Address

There are many more areas that we can
consider as weaknesses in PL/SQL. Some
are highlighted here – some discussed in
this lesson in more details, some not

17

More Areas to Consider - 2

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Values passed to dangerous code, i.e. key passed to
DBMS_CRYPTO

• Resources not managed – opened and not closed

• Dependencies – i.e. secure one layer and expose others

• Debug, Trace, Wrapping

• Schemas accessible so bypassing security logic

• Synonyms

• Non direct paths to code

• Multi layer code

• Exceptions, lack of, hiding, never raised, never caught

18

More Areas to Consider - 3

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Standalone procedures

• Exceptions – Oracle codes, code and error numbers

• Unused variables, parameters, non-initialised

• Duplication

• Unused or unreachable code

• Ref cursors

• Non-standard concatenation or home grown SQL injection
solutions

• Quoted identifiers

• Use of C or Java

• Code size

19

Section

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

Policy and Secure Coding

20

Security Best Practice in PL/SQL

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Design code for security

• Separate logic / function (code) and data domains

• Design permissions (grants)

• Design for users who access the code

• i.e. we cannot as developers control users as once
code is deployed we can have no further say in how
its used

• But we can code in logic to prevent bad use

• Use role detection

• Use privilege detection

• Use context based security in our code

• This cannot realistically be done for all code though

21

Security API as a Design Pattern

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Identify the dangerous thing. i.e. use of ALTER USER, File, Link,
Dangerous package…

• Create a separate schema to own that use

• Grant the privilege to the schema

• Create an API to limit how that privilege is used – i.e. enforce least use /
rights

• Choose carefully definer / invoker / inherit

• Grant just the API to the other users who need access to the dangerous
rights

• Add context based controls

• the “accessible by” clause in 12c or “who_called_me” before that

• Add additional controls to the schema to prevent bypass

• Password locked, schema only, limit with DDL triggers…

• Filter inputs, white list and black list

22

Create a Policy

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• The first step in establishing secure coding practices for PL/SQL is to create a
secure coding standards for all PL/SQL development

• What does could it include?

• Industry best practice

• SANS

• OWASP

• PCI

• What format should it take?

• It should be short

• Simple to follow

• Each “rule” should be distinct to avoid interpretation issues

• Define testing against the policy

• This could be manual or automated

• No testing should take place until a standard exists otherwise any testing
would be completely random

23

Section

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

Detecting PL/SQL Code Issues

24

Testing PL/SQL Code

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

Three options exist to test your own code but it should be driven by a
policy

1. Manually review code by eye

2. Use a commercial tool to scan PL/SQL code such as Fortify or
PFCLCode from PeteFinnigan.com Limited

3. Use a free tool to scan PL/SQL code such as VCG or simple SQL
and PL/SQL scripts

• Using any tool (free or commercial) out of the box has value

• But: ensure that you test to your own defined standards

• Also be aware that some tools are expensive

• Also be aware that some tools do not find what you need to test for

Analysis involves two levels of issue; static “grep”
like for dangerous code or IPR and flow analysis
for dynamic SQL or injection

Flow analysis could be by tainting or by
processing an AST

25

Manual Review

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Develop a review cycle that includes security
• Cycle

• Code is written

• Scan / review for security issues

• Function test and integration

• Scan / review again for security issues

• This should fit into the normal development process as additional
tasks that check for potential security issues

26

Commercial Code Scanner Tools

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• https://github.com/nccgroup/VCG

• Nick Dunn and Jonathan Murray – latest is 2.1.0; I had pre-release and
tested it

• Commercial tools

• PFCLCode - http://www.petefinnigan.com/products/PFCLCode.htm

• Checking

• Fortify SCA

• IBM Rational AppScan

• Checkmarx

• SonarQube – see paper in directory on this from quest toad

• codeXpert also from toad

• Links

• https://www.owasp.org/index.php/Source_Code_Analysis_Tools

• http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

27

VCG – Simple “Grep” Like Tool

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• First let us state:

• VCG is free

• VCG is simple and regular expressions in a grep like way

• VCG does not do flow analysis

• Some tests are built in and some can be configured by the
customer

• It is good at matching text strings but bad at detecting
SQL injection

• For instance running against Tanel’s Moats script shows that
v_sql is a critical SQL injection bug but the variable cannot be
reached and also the value passed in is a number not a string

28

PL-Scope

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• PL-Scope allows internals of PL/SQL to be “grabbed” by recompiling and
viewable via USER|ALL|DBA_IDENTIFIERS

• 12.2 provides more depth

• http://www.oracle.com/technetwork/testcontent/o50plsql-165471.html

• http://www.oracle.com/technology/oramag/10-sep/o50plsql.zip

• http://psoug.org/reference/plscope.html

• http://www.thatjeffsmith.com/archive/2016/06/plscope-support/

• http://www.toadworld.com/platforms/oracle/w/wiki/5770.plscope-plscp

• http://tutorials.plsqlchannel.com/public/Presentations/MNG6/MNG6.pdf

• https://technology.amis.nl/2007/11/14/oracle-11g-generating-plsql-
compiler-warnings-java-style-using-plscope/

• Trivadis has combined a PL/SQL parser with PL-Scope with new dictionary
views - https://www.salvis.com/blog/tvdca-trivadis-plsql-sql-codeanalyzer/ -
This is in general not specifically security though

Note: It would be possible to reconstruct
most of the PL/SQL source code from
DBA_IDENTIFIERS so access to this
view should be limited

29

PFCLCode

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

Available as a standalone tool or as part of PFCLScan http://www.petefinnigan.com/products/PFCLCode.htm

30

Simple Automated Code Analysis

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• A simple code analysis can be done with queries against the
database

• Analyse DBA_ARGUMENTS to locate public interfaces for
PL/SQL that can be access by code

• Use script newcodea.sql to locate code that contains
dangerous constructs such as DDL, dangerous packages
such as DBMS_DDL or dynamic SQL such as EXECUTE
IMMEDIATE, DBMS_SQL, DBMS_SYS_SQL and OPEN FOR

• These checks can identify code that could be analysed by
hand to assess if issues exist

• The new PL-Scope interface also can provide value to
analyse identifiers used in PL/SQL code.

Demo: Run analyse.sql

31

Section

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com and info@petefinnigan.com

Fixing In-Secure Code Issues

32

Example Fix: Basic Security Filtering

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• White List inputs – fixed lists are best – YELLOW, GREEN, RED..

• Black List inputs

• C style comments such as /* or

• PL/SQL comments - -

• Or unusual characters such as space

• Some techniques to use include:

• Use DBMS_ASSERT.ENQUOTE_LITERAL – This will make safe any
statement that could be exploited due to use of function names or
unbalanced single quotes

• Use DBMS_ASSERT.SIMPLE_SQL_NAME to validate objects passed
in

• Assert that any date or numeric format is specified against a hard
coded format specifier

• Do not use quoted identifiers

33

Example Fix: Static Concatenation

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Where dynamic SQL text must be used then the dynamic SQL
should be built from static text and safe SQL statement text

• Static text is PL/SQL CONSTANT text

• Safe SQL statement text is text that consists of static text and also
asserted text with dbms_assert.enquote_literal or
dbms_assert.simple_sql_name

• The sample shows an example of these ideas

Demo: Run static.sql

34

Example Fix: Bind Variables

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Where dynamic SQL or PL/SQL does not involve objects then bind
variables should instead be used as this effectively prevents
injection

• The sample shows a solution to simple.sql using bind variables.

• NOTE: The overall solutions are multi-faceted
• We should use bind variables or explicit cursors

• We should use static template text

• We should assert input from attack

• We should filter and test input to be from a narrow range

Demo: Run bind.sql

35

Conclusions

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

• Focus first on architecture

• Separate dangerous code from normal
logic

• Avoid loss of data via permissions issues

• Code securely (Injection, use, many more)

• Scan code for simple things

• Perform code review

• Create a policy

36

Questions

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

If Anyone has questions, please ask now or
catch me during the event!!

37

Secure Coding in PL/SQL

© Copyright 2020 PeteFinnigan.com Limited. All rights reserved. Tel 0044 (0) 7759277220, http://www.petefinnigan.com

